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Vapnik-Chervonenkis entropy of the spherical perceptron
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Perceptron learning of randomly labeled patterns is analyzed using a Gibbs distribution on the set of
realizable labelings of the patterns. The entropy of this distribution is an extension of the Vapnik-Chervonenkis
(VC) entropy, reducing to it exactly in the limit of infinite temperature. The close relationship between the VC
and Gardner entropies can be seen within the replica formalB8h63-651X97)12103-1

PACS numbegps): 87.10+¢€, 05.20-y

There has been recent progress towards understanding the m
relationship between the statistical physics and Vapnik- V(L,X)= de o(l;w'x;), 2
ChervonenkigVC) approaches to learning thedid~4]. The =1
two approaches can be unified in a statistical mechanics ) _ ) )
based on the VC entropy. This paper treats the case of learMhere the integral is over a uniform measure on the unit
ing randomly labeled patterns, or thapacityproblem, and  SPhere. The indicator functiov®(L,X)=lim,_oV"(L,X)
extends some of the results of previous W{Ekﬁ] to finite takes the value 1 for all realizable |abe|ingS and zero for
temperature. As we plan to explain in another paper, thi®thers.

extension is important for treating thgeneralizationprob- Using the training error, a Gibbs distribution at inverse
lem, which occurs in the context of learning patterns labeledemperature8=1/T can be defined on the set of realizable
by a target rule. labelings:

Our general framework is illustrated for the simple per-
ceptron sgni"x), which maps anN-dimensional real- P(L)=Z"VO(L,X)e mFeL.L?), ©)
valued inputx to a *1-valued output. Given a sample
X=(Xq, ... Xy ofinputs, the weight vector determines a where the partition function is defined by
labelingL=(l,, ... |, of the sample vid;=sgnfw'x;).

The weight vectow defines a normal hyperplane that sepa-
rates the positive from the negative examples. The training
error of a labelind. with respect to a reference labelib§ is
defined by

138 1-11P
el L= —5—, (1)

and is just the fraction of different labels in the two label-
ings. We consider the case in which the reference labeling is
chosen at random, and address the issueapfcity[7,8].
Namely, how many randomly labeled inputs can the percep-
tron learn with accuracy;? This issue is distinct from, but
related to, the issue @feneralizationwhich arises when the
inputs are labeled by some underlying target f@lg

The class of perceptrons can be visualized as a sphere in
N-dimensional space, since only the directiomomatters in
sgn@w™x). The labelings of the sample can be visualized
geometrically as the cells of a tessellation of this sph&og

Eaph inputx; cuts the Sphere into tWO. hemls.pheres. The. FIG. 1. Geometry of the perceptron function class. Since the
v_velght vectors of one hemlspher(_a c!assﬁy the _|nput as pOSI|c')erceptron is parametrized by the direction of Msdimensional
tive, and those of the other classify it as negative. A samplgeignt vector, the class of perceptrons can be thought of as an
of minputs cuts the sphere into many cells, as shown in Fign_gimensional sphere. Each input divides the sphere into two
1. Each cell consists of an equivalence class of weight vetyaives, consisting of weight vectors that classify the input as posi-
tors that give the sample the same labeling. Although ther@ve and negative, respectively. A sample of inputs divides the
are 2" possible labelings, not all of them can necessarily b&phere into many cells, where each cell corresponds to a distinct
realized. labeling of the sample. The VC entropy is defined as the expecta-
The volumeV(L,X) of a cell can be written as tion of the logarithm of the number of cells.
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Z=3 VoL, X)e ™l @ s(me)=—In|  |=aM(e), %)
L N mEt
The free energy is defined by where H(p) = —plnp—(1—p)In(1—p) is the binary entropy
function.
1 The canonical and microcanonical definitions of the en-
~Bf(a.p)=Gl(InZ)), ® tropy are equivalent in the thermodynamic limit. The formu-

) lations are related by a Legendre transformation,
where the quenched average)) is over the sampl& and

the reference labelingL®. The thermodynamic limit S(a, &) =min{aBe— Bf(a,B)}, 8
N,m—o is taken with the raticx=m/N fixed, and the free B
energy normalized b} to make it an intensive quantity. The \yhich implies that the conjugate variables of error and tem-
entropy is defined as perature are related vig=d(Bf)/dB.
The capacitya(€;) of the perceptron is defined as the
s(a,B)= _z {P(L)INP(L))). (6) maximum number of randomly labeled examples that can be
L learned with errore, . It is found by solving the equation

- o . oo S(a,€)=0 for a. For a>a.(€;), there is no realizable la-
In the limit of infinite temperature, the Gibbs distribution beling with errore, .

assigns equal measure to every realizable labeling, so that the oo :
entropy is just the average of the logarithm of the number of Annealed theoryAs a preliminary to calculating the free
. . - energy(5), we calculate a related quantity, the annealed free

realizable labelings, as the VC entropy was originally de'energy
fined[9]. Equationg3) and(6) generalize the VC entropy to
finite temperature. 1

The above canonical formulation toak and 8 as ther- =Bt M, B) = In{(2)). 9
modynamic state variables. The complementary microca-
nonical formulation replaceg by €;, and defines the en- The annealed averad€Z)) of the partition function can be
tropy as the average of the logarithm of the number ofcomputed via the replica trick by substituting'(L,X) for
realizable labelings with training erras [11]. The entropy  VO(L,X) in Eq. (4), wheren is a positive integer. Assuming
obeys the upper bound replica symmetry, the annealed free energy is given by

+a|nj DxH”(X\/i
1-q

ng

—Bfa"M a,B)=lim miniﬂln(l—q)Jr%ln +a|n(1+eﬁ)}. (10

n—0 q 2

The n—0 limit must be taken differently in the two dif- and is shown in Fig. 3. Either temperature or training error
ferent regionsyr<<2 anda>2 of the phase diagram in Fig. 2. can be used as a state variable in the free energy and entropy.
The order parametey is the typical overlap between two Converting between these variables is done using the ther-
weight vectors from the same cell. Singe:1 for <2, the  modynamic relationship
limit n—0 eliminates all terms except the last in Ed0),
and the resuls®"=aH(e;) follows by Legendre transfor-

mation. In this “linear” phase, the annealed entropy in- J( gfam) 1
creases linearly witlr, and saturates the boud). Finding €= =3 (12
the value ofg requires expanding the annealed free energy Ip e"+1

(10) to first order inn. It increases withy, since the size of

a typical cell is decreasing, but is independent of temperature

or error. Fora>2, the order parametay is equal to 1, Since there is only a single cell with zero training error,
meaning that the typical cell has vanishingly small size. Theve haves®"(«,e,=0)=0 for «<2. Fora>2, the annealed
limits n—0 and g—1 in Eq. (10) must be taken with entropy is negative, because there are no cells with zero
n/(1—q) held constant. After Legendre transformation of training error, with probability approaching one in the ther-
the result, we obtain the annealed entropy in the “sublinear’'modynamic limit. Thusa;=2 for €,=0.

phase @¢>2). For any positivee;<1/2, the annealed entropy increases
To summarize, the annealed entropy in the linear and suhlinearly with « for «<2. Fora>2 it initially increases sub-

linear phases is linearly, but then decreases to zero. The zero entropy line

s a, €) ac(€) is depicted in Fig. 2. By the upper bound

s a,€e)=5s(a,€;), this is an upper bound for the capacity
_|aH(e), a<2, of the perceptron to store randomly labeled examples with
| alna—(a—1)In(a—1)+aH(e)—aln2, a>2, finite errore;. This bound on capacity increases with train-
(11)  ing error.
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FIG. 2. Phase diagram. Far<2, the VC entropy increases 45
linearly with a. For «>2, the behavior of the VC entropy is sub-
linear. The zero entropy line.(e;) marks the point beyond which i
there are no realizable labelings. The solid line is from the 3.5f
quenched entropy, and the dashed line from the annealed. al T
2.5¢
For ¢,=1/2, the annealed entropy is monotonically in- ol
creasing. This reflects the obvious point that the perceptron 15
has infinite capacity if the training error is one-half. Accord- ’
ing to Eq.(12), e,=1/2 corresponds to infinite temperature, 1r
for which the Gibbs distribution is uniform over all realiz- 0.5 K
able labelings. . / . .
The annealed entropy is an upper bound on the quenched (b % 0.1 0.2 0.3 0.4 0.5

entropy. How tight a bound is it? According to a classic

result in combinatorial geometiy12,7], the total number of

realizable labelings is exactly

for any x4, ..

. Xy, in general position, and hence does not

FIG. 3. Vapnik-Chervonenkis entropfa) VC entropy vsa for
several values of;. The entropy increases linearly far<2, satu-
rating its upper bound7). Above a>2, the entropy increases sub-
linearly and then decreases to zero for any training esratrictly
less than 1/2. The quenched entropy is drawn with solid lines, and
the annealed with dashed lindg) VC entropy vse, for several
values ofa. For a>2 the range of realizablg shrinks. In the limit
of infinite «, the only realizable training error is 1/2.

13

fluctuate for any well-behaved distribution on thg 7]. The
logarithm of this number gives the quenched entropy at infi-

nite tem perature, or

aln2, a<2,

S(""T:w):{ alna—(a—1)In(a—1)

a>2.

number of realizable labelings is nonfluctuating, the order of

the logarithm and the expectation in E§) does not matter.
Quenched theonyAt finite temperature, there is no reason

to expect that the annealed and quenched entropies are equal.

The quenched entropy can be calculated by introducing a

second replication to treat the average of the logarithm in the

(14)

Comparison with(11) shows that the annealed and quenchedree energy(5). With the replica symmetric ansatz, the
entropies are equal at infinite temperature. Since the totajuenched free energy is given by

f=li i nI 1 1I
—Bf=Ilim min En( —q)+§n

n—0 q,Q

e oxn

1

nQ

1+n

Dy 2 e*ﬂ(l*a’)/ZHn

o==*1

q-Q
1-q

|

VQx+g—-Qy
ovl—q

T21-q+n(0-Q

)}

(15
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1 . ; . . . effects. In general we observe that the fluctuationQadh-

I A | crease agt—2.
09 S _ L In the sublinear phasea(>2), the order parameter
08f "/7"" T 1 g=1, so that the typical cell has become vanishingly small.
o : L 7 As in the annealed case, the limits=0 andg—1 must be
0.7+ . - -~ . . . .
N T taken with the ration/(1—q) held constant, yielding
0.6} / : // - -7 4
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FIG. 4. Order parameters. The order paramatésolid line) is xexd — (u?—1)v?x?%2)] |, (16)

the typical overlap between two weight vectors from the same cell,

and is independent of temperature or error. It increases continuously

from zero until it reaches unity at=2. The order parameted

(dashed ling is the typical overlap between two weight vectors whereu=1/\1+n(1—Q)/(1—q) andv=Q/(1—Q). The
from different cells. Its behavior as a function afis shown for  resulting entropy is graphed in Fig. 3, and is smaller than the
different values of the training erres (&,=0.05, 0.1, 0.2). Itlies  gnnealed bound@ll). The zero entropy liner,(€;) is shown
betweenq and O, and is lower for higher training errors. The i, the phase diagram of Fig. 2 and is at lowethan the zero
dashed-dotted line represents the valueQaidt capacity. Simula- entropy line from the annealed theory.

tions a_re shown foe;=0, 0.1 an.d were obtained for a system of Gardner versus VC entropyrevious work on the statis-

sizeN=100 averaged over 100 independent runs. Error bars are q[f | hani fl ing f | h tilized

the size of the symbols or smaller. ical mechanics of learning from examples has utilized a
Gibbs distribution on the space of functions, as pioneered by
Gardner[8,13]. In the Gardner formulation, the definition of

In addition to the order parametey; there is a new order capacity depends on whether the function class is continuous
parameterQ corresponding to the typical overlap betweenor discrete. For continuous function classes such as the
weight vectors drawn from different cells with the same spherical perceptron, the Gardner entropy divergesoat
training error. capacity[8,14,15. For discrete function classes such as the

In the linear phase d<2), the entropy and the order Ising perceptron, the Gardner entropy vanishes at capacity
parameter are the same as in the annealed calculation. Th§16,17]. Here we have taken a different approach involving a
new order parameté) is determined by minimization of the Gibbs distribution on the set of realizable labelings induced
O(n?) term of the free energy. As temperature rises frompy the function class. The VC entropy vanishes at capacity,
zero to infinity,Q decreases frorg to zero, as shown in Fig. regardless of whether the function class is continuous or dis-
4. As a function ofa, there is an interesting nonmonotonic crete. This is because the set of labelings is finite, for both
behavior ofQ neara=2. finite and infinite function classes.

Figure 4 also shows the results for the order parameters Replica calculations of the Gardner and VC entropies are
g andQ obtained by simulations. For a fixed but.random Setvery closely related. Th®(n) term in the expansion of the
of aN pattern vectors and labels a random fractwof the  jnnealed free energyl0) is the same as the free energy of
labels was flipped and a first solution found by linear pro-we Gardner calculation. The replica symmetric VC free en-

?hr:”;r;‘mg' (I;;|0$§:etoggggigégobyrm;féo'ég?ﬂs ;gg}‘;r;ingergy (15) resembles the one-step replica symmetry breaking
Starting from a solution within the cell a direction was (RSB) Gardner free energht 4,1, and gives a very similar

picked at random and the two boundaries of the cell in thi value for the capacity. However, it is not exactly the same.

directi : . robably a full RSB calculation is necessary to obtain the
irection were determined. Then a point on the arc ConneCtéorrect capacity

ing the boundary points was chosen at random. This proce- onlv the Iearﬁin of randomlv labeled examples has been

dure was repeated 100 000 times, and a Monte Carlo sample I yd h Whg th Y | d pf t t

was taken every 2000 steps, for a total of 50 samples. T halyzed here. en Ihe examples are drawn [rom a farge

compute the vaiue o, 50 cells were generated by flipping unction, the issue of generalization to examples not seen
a fraction ¢; of the labels for a fixed set of patterns, and during training is of great importang®,18]. This issue can

. also be addressed with a statistical mechanics of VC entropy,

Monte Carlo sampling was performed for each of these cells_ ~ =~ . .
Lo . ; as will be discussed elsewhere.

The results shown in Fig. 4 were obtained by averaging over

100 independent experiments, in each of which a set of pat- This work was supported by Bell Laboratories, the Deut-

tern vectors was drawn randomly. The deviation@fat  sche Forschungsgemeinschaft, and a travel grant by the Stu-

a=2 from the theoretical result might be due to finite sizedienstiftung des deutschen Volkes.
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