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Vapnik-Chervonenkis entropy of the spherical perceptron

P. Riegler and H. S. Seung
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974

~Received 4 September 1996!

Perceptron learning of randomly labeled patterns is analyzed using a Gibbs distribution on the set of
realizable labelings of the patterns. The entropy of this distribution is an extension of the Vapnik-Chervonenkis
~VC! entropy, reducing to it exactly in the limit of infinite temperature. The close relationship between the VC
and Gardner entropies can be seen within the replica formalism.@S1063-651X~97!12103-1#

PACS number~s!: 87.10.1e, 05.20.2y
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There has been recent progress towards understandin
relationship between the statistical physics and Vapn
Chervonenkis~VC! approaches to learning theory@1–4#. The
two approaches can be unified in a statistical mecha
based on the VC entropy. This paper treats the case of le
ing randomly labeled patterns, or thecapacityproblem, and
extends some of the results of previous work@5,6# to finite
temperature. As we plan to explain in another paper,
extension is important for treating thegeneralizationprob-
lem, which occurs in the context of learning patterns labe
by a target rule.

Our general framework is illustrated for the simple pe
ceptron sgn(wTx), which maps anN-dimensional real-
valued input x to a 61-valued output. Given a sampl
X5(x1 , . . . ,xm) of inputs, the weight vectorw determines a
labeling L5( l 1 , . . . ,l m) of the sample vial i5sgn(wTxi).
The weight vectorw defines a normal hyperplane that sep
rates the positive from the negative examples. The train
error of a labelingL with respect to a reference labelingL0 is
defined by

et~L,L
0!5

1

m(
i51

m 12 l i l i
0

2
, ~1!

and is just the fraction of different labels in the two labe
ings. We consider the case in which the reference labelin
chosen at random, and address the issue ofcapacity @7,8#.
Namely, how many randomly labeled inputs can the perc
tron learn with accuracye t? This issue is distinct from, bu
related to, the issue ofgeneralization, which arises when the
inputs are labeled by some underlying target rule@9#.

The class of perceptrons can be visualized as a sphe
N-dimensional space, since only the direction ofw matters in
sgn(wTx). The labelings of the sample can be visualiz
geometrically as the cells of a tessellation of this sphere@10#.
Each inputxi cuts the sphere into two hemispheres. T
weight vectors of one hemisphere classify the input as p
tive, and those of the other classify it as negative. A sam
of m inputs cuts the sphere into many cells, as shown in F
1. Each cell consists of an equivalence class of weight v
tors that give the sample the same labeling. Although th
are 2m possible labelings, not all of them can necessarily
realized.

The volumeV(L,X) of a cell can be written as
551063-651X/97/55~3!/3283~5!/$10.00
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V~L,X!5E dw)
i51

m

u~ l iw
Txi !, ~2!

where the integral is over a uniform measure on the u
sphere. The indicator functionV0(L,X)[ limn→0V

n(L,X)
takes the value 1 for all realizable labelings and zero
others.

Using the training error, a Gibbs distribution at inver
temperatureb51/T can be defined on the set of realizab
labelings:

P~L !5Z21V0~L,X!e2mbet~L,L
0!, ~3!

where the partition function is defined by

FIG. 1. Geometry of the perceptron function class. Since
perceptron is parametrized by the direction of anN-dimensional
weight vector, the class of perceptrons can be thought of as
N-dimensional sphere. Each input divides the sphere into
halves, consisting of weight vectors that classify the input as p
tive and negative, respectively. A sample of inputs divides
sphere into many cells, where each cell corresponds to a dis
labeling of the sample. The VC entropy is defined as the expe
tion of the logarithm of the number of cells.
3283 © 1997 The American Physical Society
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Z5(
L

V0~L,X!e2mbet~L,L
0!. ~4!

The free energy is defined by

2b f ~a,b!5
1

N
^^ lnZ&&, ~5!

where the quenched average^^ && is over the sampleX and
the reference labelingL0. The thermodynamic limit
N,m→` is taken with the ratioa[m/N fixed, and the free
energy normalized byN to make it an intensive quantity. Th
entropy is defined as

s~a,b!52(
L

^^P~L !lnP~L !&&. ~6!

In the limit of infinite temperature, the Gibbs distributio
assigns equal measure to every realizable labeling, so tha
entropy is just the average of the logarithm of the numbe
realizable labelings, as the VC entropy was originally d
fined @9#. Equations~3! and~6! generalize the VC entropy to
finite temperature.

The above canonical formulation tooka andb as ther-
modynamic state variables. The complementary micro
nonical formulation replacesb by e t , and defines the en
tropy as the average of the logarithm of the number
realizable labelings with training errore t @11#. The entropy
obeys the upper bound
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s~a,e t!<
1

N
lnS m

me t
D<aH~e t!, ~7!

whereH(p)52plnp2(12p)ln(12p) is the binary entropy
function.

The canonical and microcanonical definitions of the e
tropy are equivalent in the thermodynamic limit. The form
lations are related by a Legendre transformation,

s~a,e t!5min
b

$abe t2b f ~a,b!%, ~8!

which implies that the conjugate variables of error and te
perature are related viae t5](b f )/]b.

The capacityac(e t) of the perceptron is defined as th
maximum number of randomly labeled examples that can
learned with errore t . It is found by solving the equation
s(a,e t)50 for a. For a.ac(e t), there is no realizable la
beling with errore t .

Annealed theory. As a preliminary to calculating the fre
energy~5!, we calculate a related quantity, the annealed f
energy

2b f ann~a,b!5
1

N
ln^^Z&&. ~9!

The annealed average^^Z&& of the partition function can be
computed via the replica trick by substitutingVn(L,X) for
V0(L,X) in Eq. ~4!, wheren is a positive integer. Assuming
replica symmetry, the annealed free energy is given by
2b f ann~a,b!5 lim
n→0

min
q

H n2 ln~12q!1
1

2
lnS 11

nq

12qD 1a lnE DxHnS xA q

12qD 1a ln~11e2b!J . ~10!
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The n→0 limit must be taken differently in the two dif
ferent regionsa,2 anda.2 of the phase diagram in Fig. 2
The order parameterq is the typical overlap between tw
weight vectors from the same cell. Sinceq,1 for a,2, the
limit n→0 eliminates all terms except the last in Eq.~10!,
and the resultsann5aH(e t) follows by Legendre transfor
mation. In this ‘‘linear’’ phase, the annealed entropy i
creases linearly witha, and saturates the bound~7!. Finding
the value ofq requires expanding the annealed free ene
~10! to first order inn. It increases witha, since the size of
a typical cell is decreasing, but is independent of tempera
or error. Fora.2, the order parameterq is equal to 1,
meaning that the typical cell has vanishingly small size. T
limits n→0 and q→1 in Eq. ~10! must be taken with
n/(12q) held constant. After Legendre transformation
the result, we obtain the annealed entropy in the ‘‘subline
phase (a.2).

To summarize, the annealed entropy in the linear and s
linear phases is
sann~a,e t!

5H aH~e t!, a<2,

a lna2~a21!ln~a21!1aH~e t!2a ln2, a.2,
~11!
y

re

e

f
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b-

and is shown in Fig. 3. Either temperature or training er
can be used as a state variable in the free energy and ent
Converting between these variables is done using the t
modynamic relationship

e t5
]~b f ann!

]b
5

1

eb11
. ~12!

Since there is only a single cell with zero training erro
we havesann(a,e t50)50 for a,2. Fora.2, the annealed
entropy is negative, because there are no cells with z
training error, with probability approaching one in the the
modynamic limit. Thusac52 for e t50.

For any positivee t,1/2, the annealed entropy increas
linearly witha for a,2. Fora.2 it initially increases sub-
linearly, but then decreases to zero. The zero entropy
ac(e t) is depicted in Fig. 2. By the upper boun
sann(a,e t)>s(a,e t), this is an upper bound for the capaci
of the perceptron to store randomly labeled examples w
finite errore t . This bound on capacity increases with trai
ing error.
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For e t51/2, the annealed entropy is monotonically i
creasing. This reflects the obvious point that the percep
has infinite capacity if the training error is one-half. Accor
ing to Eq. ~12!, e t51/2 corresponds to infinite temperatur
for which the Gibbs distribution is uniform over all realiz
able labelings.

The annealed entropy is an upper bound on the quenc
entropy. How tight a bound is it? According to a class
result in combinatorial geometry@12,7#, the total number of
realizable labelings is exactly

2(
i50

N21 Sm21

i D ~13!

for any x1 , . . . ,xm in general position, and hence does n
fluctuate for any well-behaved distribution on thexi @7#. The
logarithm of this number gives the quenched entropy at i
nite temperature, or

s~a,T5`!5H a ln2, a<2,

a lna2~a21!ln~a21! a.2.
~14!

Comparison with~11! shows that the annealed and quench
entropies are equal at infinite temperature. Since the t

FIG. 2. Phase diagram. Fora,2, the VC entropy increase
linearly with a. For a.2, the behavior of the VC entropy is sub
linear. The zero entropy lineac(e t) marks the point beyond which
there are no realizable labelings. The solid line is from
quenched entropy, and the dashed line from the annealed.
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number of realizable labelings is nonfluctuating, the order
the logarithm and the expectation in Eq.~5! does not matter.

Quenched theory. At finite temperature, there is no reaso
to expect that the annealed and quenched entropies are e
The quenched entropy can be calculated by introducin
second replication to treat the average of the logarithm in
free energy~5!. With the replica symmetric ansatz, th
quenched free energy is given by

FIG. 3. Vapnik-Chervonenkis entropy.~a! VC entropy vsa for
several values ofe t . The entropy increases linearly fora,2, satu-
rating its upper bound~7!. Abovea.2, the entropy increases sub
linearly and then decreases to zero for any training errore t strictly
less than 1/2. The quenched entropy is drawn with solid lines,
the annealed with dashed lines.~b! VC entropy vse t for several
values ofa. Fora.2 the range of realizablee t shrinks. In the limit
of infinite a, the only realizable training error is 1/2.
2b f5 lim
n→0

min
q,Q

H n2 ln~12q!1
1

2
lnS 11n

q2Q

12q D 1
1

2

nQ

12q1n~q2Q!

1aE DxlnE Dy (
s561

e2b~12s!/2HnS AQx1Aq2Qy

sA12q D J . ~15!
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In addition to the order parameterq, there is a new order
parameterQ corresponding to the typical overlap betwee
weight vectors drawn from different cells with the sam
training error.

In the linear phase (a,2), the entropy and the order
parameterq are the same as in the annealed calculation. T
new order parameterQ is determined by minimization of the
O(n2) term of the free energy. As temperature rises fro
zero to infinity,Q decreases fromq to zero, as shown in Fig.
4. As a function ofa, there is an interesting nonmonotoni
behavior ofQ neara52.

Figure 4 also shows the results for the order paramet
q andQ obtained by simulations. For a fixed but random s
of aN pattern vectors and labels a random fractione t of the
labels was flipped and a first solution found by linear pr
gramming. In order to obtainq, 50 further solutions within
the same cell were generated by Monte Carlo samplin
Starting from a solution within the cell a direction wa
picked at random and the two boundaries of the cell in th
direction were determined. Then a point on the arc conne
ing the boundary points was chosen at random. This pro
dure was repeated 100 000 times, and a Monte Carlo sam
was taken every 2000 steps, for a total of 50 samples.
compute the value ofQ, 50 cells were generated by flipping
a fraction e t of the labels for a fixed set of patterns, an
Monte Carlo sampling was performed for each of these ce
The results shown in Fig. 4 were obtained by averaging ov
100 independent experiments, in each of which a set of p
tern vectors was drawn randomly. The deviation ofQ at
a52 from the theoretical result might be due to finite siz

FIG. 4. Order parameters. The order parameterq ~solid line! is
the typical overlap between two weight vectors from the same ce
and is independent of temperature or error. It increases continuou
from zero until it reaches unity ata52. The order parameterQ
~dashed line! is the typical overlap between two weight vector
from different cells. Its behavior as a function ofa is shown for
different values of the training errore t (e t50.05, 0.1, 0.2). It lies
betweenq and 0, and is lower for higher training errors. Th
dashed-dotted line represents the values ofQ at capacity. Simula-
tions are shown fore t50, 0.1 and were obtained for a system o
sizeN5100 averaged over 100 independent runs. Error bars are
the size of the symbols or smaller.
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effects. In general we observe that the fluctuations ofQ in-
crease asa→2.

In the sublinear phase (a.2), the order paramete
q51, so that the typical cell has become vanishingly sm
As in the annealed case, the limitsn→0 andq→1 must be
taken with the ration/(12q) held constant, yielding

2b f5min
u,v

H 2 lnu1
1

2
~u221!v2

1aE Dxln@11~e2b21!H~vx!#

1u@11~e2b21!H~2uvx!#

3exp@2~u221!v2x2/2!] J , ~16!

whereu[1/A11n(12Q)/(12q) andv[AQ/(12Q). The
resulting entropy is graphed in Fig. 3, and is smaller than
annealed bound~11!. The zero entropy lineac(e t) is shown
in the phase diagram of Fig. 2 and is at lowera than the zero
entropy line from the annealed theory.

Gardner versus VC entropy. Previous work on the statis
tical mechanics of learning from examples has utilized
Gibbs distribution on the space of functions, as pioneered
Gardner@8,13#. In the Gardner formulation, the definition o
capacity depends on whether the function class is continu
or discrete. For continuous function classes such as
spherical perceptron, the Gardner entropy diverges to2` at
capacity@8,14,15#. For discrete function classes such as t
Ising perceptron, the Gardner entropy vanishes at capa
@16,17#. Here we have taken a different approach involving
Gibbs distribution on the set of realizable labelings induc
by the function class. The VC entropy vanishes at capac
regardless of whether the function class is continuous or
crete. This is because the set of labelings is finite, for b
finite and infinite function classes.

Replica calculations of the Gardner and VC entropies
very closely related. TheO(n) term in the expansion of the
annealed free energy~10! is the same as the free energy
the Gardner calculation. The replica symmetric VC free e
ergy ~15! resembles the one-step replica symmetry break
~RSB! Gardner free energy@14,15#, and gives a very similar
value for the capacity. However, it is not exactly the sam
Probably a full RSB calculation is necessary to obtain
correct capacity.

Only the learning of randomly labeled examples has b
analyzed here. When the examples are drawn from a ta
function, the issue of generalization to examples not s
during training is of great importance@9,18#. This issue can
also be addressed with a statistical mechanics of VC entro
as will be discussed elsewhere.

This work was supported by Bell Laboratories, the De
sche Forschungsgemeinschaft, and a travel grant by the
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